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Preliminary remarks

Contents are based on arXiv:2009.12670

Joint work with Eric Faber

Eric will give an online talk on the same topic at the Moravian Café
(aka Masaryk University Algebra Seminar) on March 11
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Question

Question
What is the correct constructive definition of a Kan fibration between
simplicial sets?

Motivation comes from homotopy type theory.

I believe our work is also of interest to classical homotopy theorists: in
fact, the maths is in our paper is (for the most part) new classical maths
as well.
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Section 1

Type theory
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Constructive type theory

Martin-Löf’s constructive type theory is:

a foundation for constructive mathematics.

a functional programming language.

basis for proof assistants such as Agda and Lean.
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Proofs as programs

� ` a 2 �

has two readings:

a is a proof of the proposition � (in context �).

a is a computer program meeting the specification � (in context �).
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Important properties

Decidability of type checking: The question whether

� ` a 2 �

is derivable or not is decidable.

Normalisation: If � ` a 2 � is derivable, then there is a term t is
normal form and � ` a = t 2 � is derivable as well.

Canonicity: Because the only closed terms of type N in normal form
are numerals Sn0, we have that for each term t for which ` t 2 N is
derivable, there is a numeral Sn0 for which ` t = S

n0 2 N is
derivable as well.
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Issues

Lack of function extensionality

No quotient types

No “bracketing”
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Homotopy type theory

Slogan

Types are homotopy types (of spaces).

This interpretation justifies new proof principles:

Univalence

Higher inductive types

We get:

Function extensionality

Quotient types

Propositional truncation

as consequences.

Problem
Adding axioms to type theory may destroy normalisation and canonicity.
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Cubical type theory

A type theory

in univalence and (some) higher inductive types can be derived.

which enjoys canonicity (Huber).

which enjoys homotopy canonicity (Coquand, Huber, Sattler).

which enjoys normalisation (Sterling, Angiuli).

Key step: Coquand’s definition of a uniform Kan fibration in cubical sets.
(These interpret the dependent types.)

10 / 36



Simplicial type theory?

Could there be a similar type theory based on simplicial sets?

Some advantages:

Types will be interpreted as homotopy types

There is only one variant of simplicial sets

Simplicial techniques are pervasive in homotopy theory

Key step should again be: find the correct constructive definition of a Kan
fibration of simplicial sets.

11 / 36



Section 2

E↵ective Kan fibrations
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Our contribution

Our paper

In our paper we define a notion of an e↵ective Kan fibration in simplicial
sets such that . . .

they are closed under ⇧, constructively.

e↵ective Kan fibration have the RLP with respect to horn inclusions,
constructively.

every map which has the RLP with respect to horn inclusions can be
equipped with the structure of a e↵ective Kan fibration, classically.

one can, constructively, obtain universal e↵ective Kan fibrations.

Our definition is the first to satisfy all these properties.
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Kan fibrations

Definition
A map p : Y ! X is a Kan fibration if for any horn ⇤n

k ! �n and any
commutative diagram

⇤n
k

//

✏✏

Y

p

✏✏
�n //

>>

X

there exists a dotted arrow making both triangles commute.

First question

Should we only demand the existence of such fillers (property) or should
we say that a Kan fibration is a map equipped with a choice of fillers
(structure)?

Our answer
It should be structure!
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Uniformity conditions
Definition
A map p : Y ! X is a algebraic Kan fibration if for any commutative
diagram of the form

⇤n
k

//

✏✏

Y

p

✏✏
�n //

>>

X

it comes equipped with a choice of filler (the dotted arrow).

Second question

Should these fillers satisfy some compatibility conditions?

Our answer

Some compatibility (“uniformity”) conditions should be satisfied!

But which ones? To state these, we use the language of algebraic weak
factorisation systems.
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Algebraic weak factorisation systems
Functorial factorisation
A functor C! ! C!! is a functorial factorisation on a category C if it is a
section of the composition functor � : C!! ! C!.

So a functorial factorisation writes every map f in C as a composition:

X
f

// Y

X
Lf // Ef

Rf // Y

X
1 //

Lf
✏✏

X

f
✏✏

Ef
Rf
// Y

X
Lf //

f
✏✏

Ef

Rf
✏✏

Y
1
// Y

This turns the functors L and R into (co)pointed endofunctors C! ! C!.

Algebraic weak factorisation system (Grandis-Tholen,Garner)

A functorial factorisation is an algebraic weak factorisation system (AWFS)
if L and R can be extended to a comonad and a monad on C!,
respectively, and a distributive law holds (for the comonad over the
monad).
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Left and right maps

Given an AWFS:

a left map is a coalgebra for the comonad.

a right map is an algebra for the monad.

Both are closed under composition and the left maps have the LLP wrt to
the right maps.

Due to the distributive law both classes determine each other.

But the classes are not closed under retracts. Their retract closures give
one an ordinary weak factorisation system.

See Bourke and Garner, Algebraic weak factorisation systems I: Accessible

AWFS.
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Cofibrations

Our definition of an e↵ective Kan fibration relies on the presence of two
AWFSs on the category of simplicial sets.

Cofibrations, constructively

A map f : Y ! X in simplicial sets is a cofibration if it is a
monomorphism, and given any x 2 Xn, we can decide whether x lies in the
image of f , and if so, we can e↵ectively find the y 2 Yn such that
fn(y) = x .

These cofibrations form the left class in an AFWS. The associated right
class we will call the e↵ective trivial Kan fibrations.
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Simplicial Moore path object
In Van den Berg & Garner, we defined a simplicial Moore path functor.
The idea is that there is an endofunctor M on simplicial sets together with
natural transformations r : X ! MX , s, t : MX ! X and
� : MX ⇥X MX ! MX equipping X with the structure of an internal
category. In addition, there is a contraction � : MX ! MMX .

This gives one a notion of M-homotopy, which defines a congruence on
the category of simplicial sets. Homotopic maps (wrt to I = �1) are also
M-homotopic, and for maps between Kan complexes the converse holds as
well.

Theorem
The functorial factorisation sending f : Y ! X to

Y
(r .f ,1)

// MX ⇥X Y
s.p1 // X

is part of an algebraic weak factorisation system.
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Naive fibrations

Naive fibrations
A naive fibration is a right map for this AWFS: that is, a map p : Y ! X

which comes equipped with a transport operation

T : MX ⇥X Y ! Y

with p.T = s.p1, T .(r .p, 1) = 1 and
T .(µ.(p1, p2), p3) = T .(p1,T .(p2, p3)).

Kan fibrations are naive fibrations, but the converse is false. Indeed, every
map X ! 1 is a naive fibration.
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Hyperdeformation retracts

Hyperdeformation retracts (HDRs)

A hyperdeformation retract is a left map for this AWFS: that is, a map
i : Y ! X for which there is a retraction j : X ! Y and an M-homotopy
H : X ! MX with H : 1 ' i .j such that �.H = PH.H.

Important example: di/di+1 : �n ! �n+1 with si as retraction.

Facts:

The functor
dom : HDR ! sSets

is a Grothendieck fibration. (It is actually a bifibration, but we won’t
need that today.)

The category of HDRs has pullbacks, and cartesian morphisms are
stable under pullback.
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Mould square

Definition
A mould square is a morphism of HDRs which is cartesian over a
cofibration. That is, it is a square of the form

A0

a
✏✏

i0 // B0

b
✏✏

A1 i1
// B1

in which i0 and i1 are HDRs and the square is a cartesian morphism of
HDRs in which a and b are cofibrations.
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Properties of mould squares

Properties of mould squares

Mould squares can be composed horizontally and vertically, and they can
be pulled back along arbitrary morphisms of HDRs (base change).

•

✏✏

// •

✏✏

// •

✏✏
• // • // •

•

✏✏

// •

✏✏
• //

✏✏

•

✏✏
• // •

•

✏✏

// •

✏✏

•

??

//

✏✏

•

✏✏

??

• // •

• //

??

•

??
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E↵ective Kan fibration

Definition
To equip a map p : Y ! X with the structure of an e↵ective Kan fibration

means that one should specify for any solid commutative diagram

A

✏✏

// B

✏✏

// Y

p
✏✏

C //

77

D //

>>

X

a morphism D ! Y making everything commute, in a way which respects
horizontal and vertical composition, as well as base change of mould
squares.

Note that the lifting property (without the compatibility conditions) just
says that the map p has the RLP against the induced map from the
pushout B [A C to D.
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Our contribution

Our paper

In our paper we define a notion of an e↵ective Kan fibration in simplicial
sets such that . . .

they are closed under ⇧, constructively.

e↵ective Kan fibration have the RLP with respect to horn inclusions,
constructively.

every map which has the RLP with respect to horn inclusions can be
equipped with the structure of a e↵ective Kan fibration, classically.

one can, constructively, obtain universal e↵ective Kan fibrations.
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Horn squares

Proposition

E↵ective Kan fibration have the RLP wrt Horn inclusions.

Proof.
There is a special class of mould squares, which we call horn squares:

@�n

✏✏

// s⇤i (@�
n)

✏✏

// @�n

✏✏
�n

di/di+1

// �n+1
si

// �n

The induced map from the pushout to the bottom-right object of the left
hand square is the horn inclusion ⇤n+1

i/i+1 ! �n+1. Therefore e↵ective Kan
fibration have the RLP wrt horn inclusions.
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Classically OK

In fact, one can show (with quite some e↵ort!) that the compatibility
conditions ensure that the lifts against the horn squares determine the lifts
against all the mould squares. As a consequence, the compatibility
conditions can be expressed purely as conditions on the lifts against horn
squares. This can be used to show:

Theorem

Classically (in ZFC) every Kan fibration can be equipped with the
structure of an e↵ective Kan fibration.

Theorem

Universal e↵ective Kan fibrations exist (also constructively).
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Gambino & Sattler
Gambino and Sattler have also proposed a definition of a uniform Kan
fibration (mimicking Coquand’s definition in cubical sets).

Proposition

E↵ective Kan fibration are uniform Kan fibration in the sense of Gambino
& Sattler. (I expect the converse to be false (constructively!).)

Proof.
If m : A ! B is a cofibration, then we obtain a mould square on the left in:

A

m
✏✏

A⇥�i// A⇥ I
m⇥I
✏✏

⇡A // A

m
✏✏

B
B⇥�i
// B ⇥ I ⇡B

// B

Therefore e↵ective Kan fibration have the RLP against maps of the form
m⌦̂�i with �i : 1 ! I being one of the endpoint inclusions. Their
uniformity conditions follow from our base change condition. 30 / 36
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Towards an algebraic model structure

We also have proofs of:

the existence of a model structure on the simplicial sets, when
restricted to those that are e↵ectively Kan.

the existence of a model of type theory with ⇧,⌃,N, 0, 1,+,⇥.

We are currently working on:

the existence of an algebraic model structure on simplicial sets.

the existence of a model of univalent type theory in simplicial sets.
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Future work

What remains to be proven (constructively!):

We can show that universal e↵ective Kan fibration exist, but we
haven’t shown they are univalent.

We haven’t shown that universes are e↵ectivily Kan.

And we haven’t shown that there exists an algebraic model structure
on the entire category of simplicial sets based on our notion of an
e↵ective Kan fibration.
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THANK YOU!
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First definition of M

Let T0 be the simplicial set whose n-simplices are zigzags (traversals) of
the form

• •p1oo p2 // • p3 // • •p4oo p5 // •

with pi 2 [n]. With the final segment ordering this can be seen as a poset
internal to simplicial sets (simplicial poset). Then M can be defined as the
polynomial functor associated to the map cod : T1 ! T0.

This makes M an instance of a polynomial comonad.
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Second definition of M
Alternatively, we can define for any such n-dimensional traversal ✓ its
geometric realisation b✓ (often just written ✓) as the colimit of the diagram

�n

dps1

��
�n

dpt1
��

dps2

��
�n

dpt2
��

dps3

��
. . .

dps
k

��
dpt3
��

�n

dpt
k

��

�n+1 �n+1 �n+1 �n+1

where p
s
i is pi + 1 if edge i point to the right, and p

s
i is pi if edge i points

to the left and vice versa for pti . Then

(MX )n =
X

✓2(T0)n

Hom(b✓,X ).

By considering only those n-dimensional traversals of the form

• n // • n�1 // . . . 1 // • 0 // •

one can show that X I ✓ MX .
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