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Constructive homotopy theory

Question

What does homotopy theory look like in constructive mathematics?
Or even in ZF set theory without the axiom of choice?

This question has two sides:

1 The formal aspects of homotopy theory

2 The behavior of speci�c homotopy theories, and particularly
�the� homotopy theory of �spaces�.

Let's discuss the second one �rst.



The homotopy theory of spaces

Classically, there are many di�erent presentations of the homotopy
theory of spaces:

• Topological spaces, up to weak homotopy equivalence

• Simplicial sets (Kan complexes)

• Semi-simplicial sets

• Presheaves on other �test categories�

• Small categories, up to nerve equivalences

• . . .

(We say �spaces�, but it's often better to think of this as a
homotopy theory of ∞-groupoids.)



Constructive homotopy spaces

At least two of these now have constructive versions:

• Simplicial sets (Henry, Gambino, Sattler, Szumilo)

• Equivariant cartesian cubical sets (Awodey, Cavallo, Coquand,
Riehl, Sattler)

• E�ective/uniform simplicial sets? (van den Berg, Faber)

However, it's not known if these homotopy theories are
constructively equivalent to each other.

If they are not, then which is �correct�?

What does that even mean?



A proposed answer

Recall that the 1-category Set is the �free cocompletion of a point�:
every object M ∈ C of a cocomplete category C determines a
unique cocontinuous functor Set→ C sending ∗ to M.

Proposal

The homotopy theory of spaces should be the free cocompletion of
a point among homotopy theories.

This is true classically, so it's reasonable to want constructively.
And it's a universal property, so it characterizes an object up to
equivalence (if such an object exists).

But what does it mean precisely?



What is a homotopy theory?

This leads us back to the �rst question.

What is a homotopy theory, anyway?

Classical answer

A Quillen model category.

• Basic parts of model category theory work constructively, when
formulated with speci�ed operations.

• More advanced parts, like the small object argument, seem to
depend on choice.

• Hard to formulate universal properties of homotopy theories
with model categories.

• Classically, most interesting homotopy theories admit model
category presentations, but we shouldn't assume this will
necessarily be true constructively.



What is a homotopy theory? Take two.

Modern answer

An (∞, 1)-category.

(i.e. a higher category with n-morphisms for all n, invertible if n > 1.)

• In classical mathematics, now the �standard� way to formulate
such properties.

• Requires picking a model: quasicategories, simplicial
categories, complete Segal spaces, etc.. . .

• None of these models has yet been developed constructively.

• Finding the �correct� constructive notion of (∞, 1)-category
seems likely to be at least as hard as the problem for
∞-groupoids (i.e. spaces)!



What is a homotopy theory? Take three.

Quasi-modern answer (Heller, Grothendieck, Franke)

A derivator.

• A �quotient� rather than a presentation, so it should always
exist, even constructively.

• Uses only 1-categories, which we understand constructively.

�Derivators . . . give us the language to characterize higher cat-
egory theory using only usual category theory, without any em-
phasis on any particular model (in fact, without assuming we
even know any).� � Denis-Charles Cisinski

To explain what a derivator is, let's consider an example. . .
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Exact completion

De�nition

A category is (Barr-)exact if it has �nite limits and every internal
equivalence relation has a quotient of which it is the kernel.

The forgetful functor

ExactCat→ FiniteLimitCat

has a left adjoint, the free exact completion

E 7→ Eex



Pseudo equivalence relations

Let E have �nite limits.

De�nition

A pseudo equivalence relation in E is a span X0
s←− X1

t−→ X0

together with:

• A re�exivity map r : X0 → X1 with sr = tr = 1X0
.

• A symmetry map v : X1 → X1 with sv = t and tv = s.

• A transitivity map t : X1 ×X0
X1 → X1 with . . .

• An equivalence relation i� (s, t) : X1 → X0 × X0 is monic.

• Pseudo equivalence relations in Set are also called setoids.



The exact completion

De�nition

For pseudo-equivalence relations X ,Y a morphism representative
f : X → Y is

• f0 : X0 → Y0 and f1 : X1 → Y1 with sf1 = f0s and tf1 = f0t.

Two morphism representatives f , g are equivalent if

• There exists h : X0 → Y1 with sh = f0 and th = g0.

The free exact completion Eex consists of:

• Pseudo equivalence relations, with

• Equivalence classes of morphism representatives.

Remark

Set ↪→ Setex is an equivalence ⇐⇒ the axiom of choice holds.



Limits in the exact completion

Since Eex is supposed to be exact, it must have �nite limits.

Example

The product of X ,Y ∈ Eex has

(X × Y )0 = X0 × Y0 (X × Y )1 = X1 × Y1.

Given morphisms Z → X and Z → Y in Eex, choose
representatives f and g . Then (f0, g0) : Z0 → X0 × Y0 and
(f1, g1) : Z1 → X1 × Y1 represent a morphism Z → X × Y .

In the in�nite case, we can say:

Theorem

If E is complete and the axiom of choice holds, Eex is also complete.
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In�nite �limits�

And yet, Eex obviously does have a sort of �product� operation:(∏
a Xa

)
0

=
∏

a Xa,0

(∏
a Xa

)
1

=
∏

a Xa,1

This has a �universal property� relative to cones of morphism
representatives, rather than the usual cones of morphisms.

How can we formulate this abstractly?

1 Regard Eex as the quotient of an �E-category�.

2 Extend Eex to a derivator!



Coherent diagrams

Let A be a small category.

De�nition

A coherent A-diagram in Eex comprises

• A pseudo equivalence relation Xa ∈ Eex for each object a ∈ A.

• A morphism representative Xα : Xa → Xa′ for each morphism
α : a→ a′ in A.

• Speci�ed witnesses Xa,0 → Xa′′,1 of functoriality.

A morphism representative of such, f : X → Y , comprises

• A morphism representative fa : Xa → Ya for each a ∈ A.

• Speci�ed witnesses Xa,0 → Ya′,1 of naturality.

Two such are equivalent if there are witnesses of such, Xa,0 → Ya,1.
This de�nes a category Eex(A).



In�nite �limits�, derivator-style

Theorem

If E is complete, then each �constant coherent diagram� functor

const : Eex → Eex(A) has a right adjoint.

Theorem

If E has small pullback-stable coproducts, then each

const : Eex → Eex(A) has a left adjoint.
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Derivators

Let Cat and CAT be the 2-categories of small and large categories.

De�nition (Constructive version)

A derivator is a 2-functor D : Catop → CAT such that:

1 D takes �nite coproducts to products.

2 For A ∈ Cat, the functor ι∗ : D(A)→ D(A0), with A0 the
discrete category on the objects of A, is conservative.

3 For u : A→ B in Cat, the functor u∗ has a left adjoint u! and
a right adjoint u∗.

4 Comma squares in Cat satisfy the Beck-Chevalley condition
for these adjoints.



Examples of derivators

Example

If E is complete and has small pullback-stable coproducts, then
Eex is a derivator, with Eex(A) the category of coherent diagrams.

Example

If C is a complete and cocomplete category, it de�nes a derivator
by C (A) = C A, the usual functor category. The functors u! and u∗
are pointwise Kan extensions.

Example (in classical mathematics)

Every complete and cocomplete homotopy theory M (= model
category or (∞, 1)-category) determines a derivator, where M (A)
is the homotopy category of homotopy-coherent A-diagrams in M .



The 2-category of derivators

De�nition

A morphism of derivators G : D1 → D2 is a pseudonatural
transformation. It is cocontinuous if for any u : A→ B , the mate

u!GA → GBu!

is an isomorphism.

A transformation of derivators is a modi�cation. This de�nes

Hom(D1,D2) and Homcc(D1,D2)



The free cocompletion of a point

Theorem (Heller, Cisinski � in classical mathematics)

The derivator of spaces S is the free cocompletion of a point.

That is, for any derivator D , evaluation at ∗ ∈ S (1):

Homcc(S ,D)→ D(1)

is an equivalence of categories.

• This is a 2-categorical universal property, expressed by an
equivalence of 1-categories. No more higher-categorical
machinery than the analogous fact for the 1-category Set.

• The bare homotopy category S (1) is not structured enough
to even state, let alone prove, such a property.



The constructive homotopy theory of spaces?

Proposal

The �correct� homotopy theory of spaces, constructively, should
de�ne a derivator S that is the free cocompletion of a point.

• It remains to be seen whether such a thing exists!

• We can try to understand what it would be like, by studying
derivators that would be localizations or subcategories of it.
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Some classical subcategories of spaces

Classically, the homotopy theory S of spaces has many interesting
subcategories, notably:

• The category Set of sets, a.k.a. homotopy 0-types

• The 2-category Gpd of groupoids, a.k.a. homotopy 1-types

• The (n + 1)-category n-Typ of homotopy n-types

• The poset Prop of truth values (the case n = −1)
Each of these is the free cocompletion of a point in �its own world�:

• Set among 1-categories (i.e. (1, 1)-categories)

• Gpd among (2, 1)-categories

• n-Typ among (n+1, 1)-categories

• Prop among posets (i.e. �(0, 1)-categories�)



Identifying truncated derivators

Q: How can we tell whether a derivator D �is� an (n, 1)-category
rather than a general (∞, 1)-category?

A: By the behavior of (co)limits of constant diagrams.

Example

In a 1-category, the equalizer of a constant diagram

M M
1M

1M

is just the object M again. But in a higher category, such a
(homotopy) equalizer is the free loop space object LM.

Example

In a poset, the binary product of an object M with itself is just M
again; but not in a general 1-category.



D-equivalences

Let D be a derivator, and pA : A→ 1 the projection for A ∈ Cat.

De�nition

u : A→ B in Cat is a D-equivalence if for any M ∈ D(1), it
induces an isomorphism between limits of constant diagrams:

(pB)∗ (pB)∗M ∼−→ (pA)∗ (pA)∗M.

Example

If D is a 1-category, (pA)∗ (pA)∗M is the power Mπ0(A) by the set
of connected components of A. Thus, u is a D-equivalence if it
induces π0(A) ∼−→ π0(B). The converse holds if D = Set.



More D-equivalences

Example

u is a Gpd-equivalence i� it induces an equivalence of groupoid
re�ections, Π1(A) ∼−→ Π1(B).

Example

u is a Prop-equivalence i� whenever B has an object, so does A.

Example (in classical mathematics)

u is an S -equivalence i� it induces a weak homotopy equivalence
of nerves.

And similarly for the derivators n-Typ of homotopy n-types,
including Gpd = 1-Typ and Set = 0-Typ and Prop = (−1)-Typ.



Local derivators

Let D and T be derivators.

De�nition

D is T -local if every T -equivalence is a D-equivalence.

Examples

• Every complete and cocomplete 1-category is Set-local.

• Every complete lattice is Prop-local.

• In classical mathematics, every derivator is S -local and every
(n+1, 1)-category is n-Typ-local.



Relative free cocompletions

De�nition

T is a relative free cocompletion of a point if for any T -local
derivator D , evaluation at ∗ ∈ T (1):

Homcc(T ,D)→ D(1)

is an equivalence of categories.

Examples

Set, Prop, and Gpd are relative free cocompletions of a point.

Examples (in classical mathematics)

n-Typ is a relative free cocompletion of a point, for all n ≥ −1.



BUT

Setex is NOT Set-local!

Even though it is intuitively still �1-categorical�.

Observation

u : A→ B is a Setex-equivalence i� it induces an isomorphism of
setoids of connected components, πe0A

∼−→ πe0B :

• (πe0A)0 = the set of objects of A.

• (πe0A)1 = the set of zigzags of morphisms in A.

This is a stronger condition than being a Set-equivalence.

Example

Let p : X → Y be a surjection, make Y a discrete category, and X
a category such that p becomes fully faithful. Then p is a
Set-equivalence, but not a Setex-equivalence unless p has a section.



More relative free cocompletions

Theorem

Setex is also a relative free cocompletion of a point.

• Set is Setex-local, though Setex is not Set-local.

• Eex is Setex-local for any suitable E .



What does this tell us?

Conclusion

If there is a derivator S that is an �absolute� free cocompletion of
a point constructively, its subcategory of �0-types� must contain
not just sets, but also setoids.

• Existing simplicial and cubical proposals do have this property.

• But it's disturbing for the prospect of applying homotopy
theory to deduce conclusions about sets (or sheaves of sets)!

• Related problem: de�ning �realizability higher toposes� whose
0-types form a realizability 1-topos.



What can we do?

Possible responses:

1 Bite the bullet: learn to pass back and forth all the time
between setoids and sets.

2 No sets, only setoids: use a foundation of �pre-sets�, like
MLTT without identity types.

3 Spaces are primitive: use a foundation like HoTT, where
spaces are basic objects, not de�ned out of sets.

4 Don't give up: is there a principled way to exclude Setex?



A fragment of the locality preorder



Towards anafunctors

There are already grounds on which to object to Cat and Gpd:
they do not invert weak equivalences of categories (fully faithful
and essentially surjective functors).

De�nition (Makkai)

An anafunctor is a morphism in the category of fractions of Cat
with respect to weak equivalences.

• Is there a derivator Gpd
ana

of �groupoids and anafunctors�
that sits directly over Set? Or even Sana?

(May require a weak form of choice like SCSA/WISC/AMC.)

• Is there a notion of �ana-derivator� using Catana instead of
Cat, that includes only the right-hand column?



More conjecture: towards spaces

S ?? Sana????

. . .
...

R2Gpd?
...

EGpd? 2Gpd?
...

RGpd?
...

Setex Gpd
...

Setreg Gpd
ana

???

Setpos Set

Prop

?
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