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Traditional model theory uses signatures and formulas to specify
structures and their morphisms. Structures are specified by
theories and, as morphisms, one takes homomorphisms,
embeddings, elementary embeddings, etc.

[Shelah 1987] introduced abstract elementary classes using
signatures but no formulas. Instead, structures and morphisms are
governed by abstract properties.

[Makkai, Paré 1989] defined accessible categories as a framework
for model theory without signatures and without underlying sets.
They showed that these categories correspond to infinitary
theories, i.e., theories in Lκλ using disjunctions of < κ formulas
and quantifications over < λ variables.

This means that every accessible category is equivalent to the
category of models of an Lκλ-theory with homomorphisms as
morphisms and, conversely, every category of models of an
Lκλ-theory with Lκλ-elementary embeddings as morphisms is
accessible.



Definition 1. A category K is called λ-accessible, where λ is a
regular cardinal, provided that

(1) K has λ-directed colimits,

(2) K has a set A of λ-presentable objects such that every object
of K is a λ-directed colimit of objects from A.

An object A is λ-presentable if its hom-functor

hom(A,−) : K → Set

preserves λ-directed colimits.

A category is accessible if it is λ-accessible for some regular
cardinal λ.

Every AEC is an accessible category with directed colimits and
morphisms being monomorphisms (Beke, Lieberman, LR 2012).

Every accessible category can be equipped with underlying sets and
formulas but it can be done in many ways. My aim is to present
some advantages of this ”point-free” approach.



Every object of an accessible category is λ-presentable for some
regular cardinal λ. The smallest regular cardinal λ such that A is
λ-presentable is called the presentability rank of A. If the
presentability rank of A is µ+ then µ is called the size of A.

The size of an infinite set is its cardinality. The same for an infinite
poset or for an uncountable group.

In an AEC, sizes eventually coincide with cardinalities of underlying
sets.

The size of an infinite complete metric space is its density
character, i.e., the smallest cardinality of a dense subset. The same
for infinite dimensional Banach spaces. The size of an infinite
dimensional Hilbert space is the cardinality of its orthonormal base.
Let us add that Ban and Hilb (with linear maps of norm ≤ 1) are
ℵ1-accessible with directed colimits.

Proposition 1. (Beke, JR 2012) In every accessible category with
directed colimits, presentability ranks are successors starting from
some cardinal.

In a general accessible category, it is true under GCH.



Any infinite-dimensional Banach space has cardinality λℵ0 for some
infinite cardinal λ [Bartoszyński, Džamonja, Halbeisen, Murtinová,
Plichko 2005]. Thus there are no Hilbert spaces in cardinality λ of
countable cofinality. But there are Hilbert spaces of any infinite
size. Thus in Hilb sizes never start to coincide with cardinalities
and there are arbitrarily large gaps of cardinalities but not in sizes.

In an abstract elementary class, there are not arbitrarily large gaps
of sizes.

Problem 1. (Beke, JR 2012) Are there accessible categories (with
directed colimits) with arbitrarily large gaps of sizes?

An accessible category is called LS-accessible if this cannot
happen.

Proposition 2. (Beke, JR 2012) Every accessible category K with
directed colimits equipped with a faithful functor to Set preserving
directed colimits is LS-accessible.

Proposition 3. (Lieberman, JR 2014) Every accessible category K
with directed colimits whose morphisms are monomorphisms is
LS-accessible.



Every AEC is equipped with a faithful functor to Set preserving
directed colimits.

Let Ban0, or Hilb0 be the categories of Banach, or Hilbert spaces
and linear isometries. They are ℵ1-accessible categories with
directed colimits whose morphisms are monomorphisms.

Proposition 4. (Lieberman, JR, Vasey 2019) There is no faithful
functor Hilb0 → Set preserving directed colimits.

Hence Hilb0 is not equivalent to any AEC. The same for Ban0 or
CAlg0 (commutative C ∗-algebras and embeddings).

Lκω-theories yield (∞, ω)-elementary categories which are AECs. It
is easy to give an AEC which is not Lκω-axiomatizable in its
signature. For instance, the category Setun of uncountable sets
and monomorphisms.

Theorem 1. (Henry 2018) Setun is an abstract elementary class
which is not (∞, ω)-elementary.

The proof is much more difficult because one has to exclude all
possible faithful functors to Set preserving directed colimits. We
only know that the natural one does not work. With Makkai, we
failed to prove it. I will return to this later.



Let K be an accessible category with directed colimits and λ an
infinite cardinal. K is λ-categorical if it has, up to isomorphism,
precisely one object of size λ.

Shelah’s Categoricity Conjecture claims that for every AEC K
there is a cardinal κ such that K is either λ-categorical for all
λ ≥ κ or K is not λ-categorical for all λ ≥ κ.

This was conjectured by Loś for first-order theories in a countable
language in 1954 and proved by Morley in 1965. In 1970, Shelah
extended it for uncountable languages. SCC is the main test
question for AECs.

Of course, SCC was formulated using external sizes, i.e.,
cardinalities of underlying sets. Since they coincide with internal
sizes starting from some cardinal, SCC is the property of the
category K.

Problem 2. Can Shelah’s Categoricity Conjecture be extended to
accessible categories with directed colimits?



Example 1.(Beke, JR 2012) Let K be an accessible category with
directed colimits which is not LS-accessible. Then K q Set is an
accessible category with directed colimits which does not satisfy
SCC.

To deal with SCC, Shelah introduced many tools including stable
independence ^ generalizing linear independence in vector spaces
and algebraic independence in fields. In [Lieberman, JR, Vasey
2019], we showed that this is a property of an accessible category,
i.e., a point-free concept.

The stable independence ^ in K consists in the choice of squares

M1
// M3

M0

OO

// M2

OO

which are declared to be independent. We say that M1 and M2 are
independent over M0 in M3.



There are seven axioms, for instance, every span can be completed
to an independent square and uniquely up to an equivalence,
independent squares are closed under composition, etc. But the
crucial axiom is that the category K

^
whose objects are

morphisms in K and morphisms are independent squares is
accessible. This reflects model-theoretical witness and local
character properties. Without this axiom we speak about weak
stable independence.

Theorem 2. (Lieberman, JR, Vasey 2019) An accessible category
with directed colimits has at most one stable independence.

Every AEC having stable independence is stable and tame. These
two properties are defined using Galois types, i.e., pairs (f , a)
where f : M → N is a morphism and a ∈ UN an element of the
underlying set of N. I do not know whether stability and tameness
are point-free concepts.

Every accessible category with pushouts has stable independence
consisting of pushout squares. But accessible categories whose
morphisms are monomorphisms do not have pushouts.



A cellular category is a cocomplete category equipped with a class
M of morphisms containing all isomorphisms and closed under
pushouts and transfinite compositions.

A commutative square
M1

// M3

M0

OO

// M2

OO

is called cellular if the induced morphism P → M3 from the
pushout belongs to M.

Proposition 5. In every cellular category, cellular squares form a
weak stable independence.

Choosing M = Iso, cellular squares are pushout squares.

A cellular category is combinatorial if it is cofibrantly generated,
i.e., if M is a closure of a set of morphisms under pushouts,
transfinite compositions and retracts. This terminology is borrowed
from homotopy theory because in a combinatorial model category
both cofibrations and trivial cofibrations are cofibrantly generated.



In a cellular category (K,M), KM denotes the category of
K-objects and M-morphisms.

A cellular category (K,M) is called

1. coherent if gf , g ∈M, then f ∈M,

2. λ-continuous if KM is closed under λ-directed colimits in K,

3. λ-accessible if it is λ-continuous and both K and KM are
λ-accessible,

4. accessible if it is λ-accessible for some λ.

Theorem 3. (Lieberman, JR, Vasey) Let (K,M) be an accessible
cellular category which is retract-closed, coherent and
ℵ0-continuous. Then the following are equivalent:

1. KM has a stable independence,

2. cellular squares for a stable independence in KM,

3. (K,M) is combinatorial.



Examples 2. Let K be locally presentable (= accessible and
cocomplete.
(1) K,K2) is combinatorial and independent squares are
commutative squares.
(2) (K,RegMono) is cellular. If K is coregular, cellular squares are
effective pullback squares of [Barr 1988]. If K has effective unions
(= every pullback square is effective), (K,RegMono) is
combinatorial. This implies the well-known fact that Grothendieck
toposes and Grothendieck abelian categories have enough
injectives.
(Ban,RegMono) is not combinatorial because it is not stable, or
regular injectives do not form an accessible category.
(3) If K is locally finitely presentable, (K,PureMono) is cellular.
Cellular squares are pure effective squares of [Borceux, JR 2007]. If
K is additive, (K,PureMono) is combinatorial [Lieberman,
Positselski, JR, Vasey 2020].



If F : K → L is a colimit preserving functor from a locally
presentable category K to a combinatorial category L then K is
combinatorial w.r.t. the left induced cellular structure given by
preimages [Makkai, JR 2013] . This result uses Lurie’s good
colimits.

If L is coherent and ℵ0-continuous, then this follows from
Theorem 3.

A cellular category (K,M) yields the cellular category (K2,M!)
where M! consists of cellular squares.

Theorem 3. [Lieberman, JR, Vasey 2020] If (K,M) is coherent,
ℵ0-continuous and combinatorial then (K2,M!) has the same
properties.

It can be iterated and we get a higher-order stable independence
on KM.



Let K be an accessible category with directed colimits and all
morphisms monomorphisms equipped with a faithful functor
U : K → Set preserving directed colimits and monomorphisms.
Operations definable on K are natural transformations Un → U
(this goes back to [Lawvere 1963]) and relations definable on K
are subfunctors of Un preserving directed colimits [JR 1981].

In this way, we can test whether K is equivalent to an AEC.

Di Liberti and Henry (2018) assigned to an accessible category K
with directed colimits the category S(K) of all functors K → Set

preserving directed colimits.

This category is a Grothendieck topos, and they call it the Scott
topos of K because it generalizes the usual Scott topology on a
directed complete poset.

Conversely, to any Grothendieck topos T we can assign the
category P(T ) of points, i.e., functors T → Set preserving
colimits and finite limits. The category P(T ) is (∞, ω)-elementary.
Moreover, (∞, ω)-elementary categories are precisely categories of
points of Grothendieck toposes.



If Accω is the category of accessible categories with directed
colimits and functors preserving directed colimits and GTop the
category of Grothendieck toposes and functors preserving colimits
and finite limits (geometric morphisms) then S : Accω → GTop is
left adjoint to P : GTop → Accω. This is the Scott adjunction of
[Di Liberti, Henry 2018].

In particular, S(K) bears knowledge about all finitary function and
relation symbols definable in K. Thus it plays the role of the ”full
(∞, ω)-theory” of K.

The unit ηK : K → PS(K) maps K to the category of models of its
full (∞, ω)-theory.

ηK : K → PS(K) is faithful iff there is a faithful functor K → Set

preserving directed colimits.

If K is (∞, ω)-elementary, there is the ”reduct” functor
R : PS(K)→ K such that RηK = IdK.

Conversely, the existence of such a splitting of ηK makes K
(∞, ω)-elementary. In this way, Henry proved Theorem 1. In fact
PS(Setℵ1) = PS(Setℵ0) = Setℵ0 .



Scott adjunction seems to be a strong tool for studying accessible
categories with directed colimits.

[Di Liberti 2020] related Scott toposes to classifying toposes and
[Espindola 2020] used this to deal with Problem 2.

Theorem 4. (Espindola 2020) Assume GCH and the existence of a
proper class of strongly compact cardinals. Then every accessible
category with directed colimits and interpolation satisfies SCC.

Interpolation is a strengthening of amalgamation and, under GCH,
it is equivalent to SCC in AECs (Espindola 2018).



Propositions 2 and 3 follow from the existence of a faithful functor
E : Lin → K preserving directed colimits where Lin is the category
of linearly ordered set and strictly monotone maps. The reason is
that Lin is LS-accessible and E preserves sizes.

This goes back to [Makkai, Paré] who observed that [Morley 1965]
ensures that E exists for every (∞, ω)-elementary K. It yields
Ehrenfeucht-Mostowski models given by indiscernibles.

Let W be the category of well-ordered sets where morphisms are
either strictly monotone maps or constant maps. The W is an
accessible category with directed colimits but without an
EM-functor [Beke, JR]. However, W is LS-accessible.

Let K be an accessible category with directed colimits. A functor
E : Lin → K preserving directed colimits induces a geometric
morphism S(E ) : Set∆ → S(K).

Following Diaconescu theorem, PS(Lin) ' Lin. A localic
geometric morphism G : Set∆ → S(K) yields a faithful
G (E ) : Lin → PS(K) (Di Liberti 2020).


